Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(1): e2211258120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577063

RESUMO

The retromer is a heteromeric protein complex that localizes to endosomal membranes and drives the formation of endosomal tubules that recycle membrane protein cargoes. In plants, the retromer plays essential and canonical functions in regulating the transport of vacuolar storage proteins and the recycle of endocytosed plasma membrane proteins (PM); however, the mechanisms underlying the regulation of assembly, protein stability, and membrane recruitment of the plant retromer complex remain to be elucidated. In this study, we identify a plant-unique endosomal regulator termed BLISTER (BLI), which colocalizes and associates with the retromer complex by interacting with the retromer core subunits VPS35 and VPS29. Depletion of BLI perturbs the assembly and membrane recruitment of the retromer core VPS26-VPS35-VPS29 trimer. Consequently, depletion of BLI disrupts retromer-regulated endosomal trafficking function, including transport of soluble vacuolar proteins and recycling of endocytosed PIN-FORMED (PIN) proteins from the endosomes back to the PM. Moreover, genetic analysis in Arabidopsis thaliana mutants reveals BLI and core retromer interact genetically in the regulation of endosomal trafficking. Taken together, we identified BLI as a plant-specific endosomal regulator, which functions in retromer pathway to modulate the recycling of endocytosed PM proteins and the trafficking of soluble vacuolar cargoes.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte Proteico , Endossomos/metabolismo , Vacúolos/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Arabidopsis/metabolismo , Nexinas de Classificação/metabolismo
2.
AMB Express ; 12(1): 129, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202944

RESUMO

Dendrobium nobile Lindl. has been used as a traditional Chinese medicine for a long time, in which the most important compound is dendrobine functioning in a variety of pharmacological activities. Farnesyl diphosphate synthase (FPPS) is one of the key enzymes in the biosynthetic pathway of dendrobine. In this work, we found the expression profiles of DnFPPS were correlated with the contents of dendrobine under the methyl jasmonate (MeJA) treatments at different time. Then, the cloning and functional identification of a novel FPPS from D. nobile. The full length of DnFPPS is 1231 bp with an open reading frame of 1047 bp encoding 348 amino acids. The sequence similarity analysis demonstrated that DnFPPS was in the high homology with Dendrobium huoshanense and Dendrobium catenatum and contained four conserved domains. Phylogenetic analysis showed that DnFPPS was the close to the DhFPPS. Then, DnFPPS was induced to express in Escherichia coli, purified, and identified by SDS-PAGE electrophoresis. Gas chromatography-mass spectrometry analysis indicated that DnFPPS could catalyze dimethylallyl pyrophosphate and isopentenyl pyrophosphate to produce farnesyl diphosphate. Taken together, a novel DnFPPS was cloned and functionally identified, which supplied a candidate gene for the biosynthetic pathway of dendrobine.

3.
Plant Cell ; 34(6): 2242-2265, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35262735

RESUMO

WRINKLED1 (WRI1) is an important transcription factor that regulates seed oil biosynthesis. However, how WRI1 regulates gene expression during this process remains poorly understood. Here, we found that BLISTER (BLI) is expressed in maturing Arabidopsis thaliana seeds and acts as an interacting partner of WRI1. bli mutant seeds showed delayed maturation, a wrinkled seed phenotype, and reduced oil content, similar to the phenotypes of wri1. In contrast, BLI overexpression resulted in enlarged seeds and increased oil content. Gene expression and genetic analyses revealed that BLI plays a role in promoting the expression of WRI1 targets involved in fatty acid biosynthesis and regulates seed maturation together with WRI1. BLI is recruited by WRI1 to the AW boxes in the promoters of fatty acid biosynthesis genes. BLI shows a mutually exclusive interaction with the Polycomb-group protein CURLY LEAF (CLF) or the chromatin remodeling factor SWITCH/SUCROSE NONFERMENTING 3B (SWI3B), which facilitates gene expression by modifying nucleosomal occupancy and histone modifications. Together, these data suggest that BLI promotes the expression of fatty acid biosynthesis genes by interacting with WRI1 to regulate chromatin dynamics, leading to increased fatty acid production. These findings provide insights into the roles of the WRI1-BLI-CLF-SWI3B module in mediating seed maturation and gene expression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Integr Plant Biol ; 63(7): 1240-1259, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33729679

RESUMO

Pumilio RNA-binding proteins participate in messenger RNA (mRNA) degradation and translational repression, but their roles in plant development are largely unclear. Here, we show that Arabidopsis PUMILIO PROTEIN24 (APUM24), an atypical Pumilio-homology domain-containing protein, plays an important part in regulating seed maturation, a major stage of plant development. APUM24 is strongly expressed in maturing seeds. Reducing APUM24 expression resulted in abnormal seed maturation, wrinkled seeds, and lower seed oil contents, and APUM24 knockdown resulted in lower levels of WRINKLED 1 (WRI1), a key transcription factor controlling seed oil accumulation, and lower expression of WRI1 target genes. APUM24 reduces the mRNA stability of BTB/POZMATH (BPM) family genes, thus decreasing BPM protein levels. BPM is responsible for the 26S proteasome-mediated degradation of WRI1 and has important functions in plant growth and development. The 3' untranslated regions of BPM family genes contain putative Pumilio response elements (PREs), which are bound by APUM24. Reduced BPM or increased WRI1 expression rescued the deficient seed maturation of apum24-2 knockdown mutants, and APUM24 overexpression resulted in increased seed size and weight. Therefore, APUM24 is crucial to seed maturation through its action as a positive regulator fine-tuning the BPM-WRI1 module, making APUM24 a promising target for breeding strategies to increase crop yields.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Melhoramento Vegetal/métodos , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...